15 research outputs found

    Adversarial Reprogramming of Text Classification Neural Networks

    Get PDF
    Adversarial Reprogramming has demonstrated success in utilizing pre-trained neural network classifiers for alternative classification tasks without modification to the original network. An adversary in such an attack scenario trains an additive contribution to the inputs to repurpose the neural network for the new classification task. While this reprogramming approach works for neural networks with a continuous input space such as that of images, it is not directly applicable to neural networks trained for tasks such as text classification, where the input space is discrete. Repurposing such classification networks would require the attacker to learn an adversarial program that maps inputs from one discrete space to the other. In this work, we introduce a context-based vocabulary remapping model to reprogram neural networks trained on a specific sequence classification task, for a new sequence classification task desired by the adversary. We propose training procedures for this adversarial program in both white-box and black-box settings. We demonstrate the application of our model by adversarially repurposing various text-classification models including LSTM, bi-directional LSTM and CNN for alternate classification tasks

    Expediting TTS Synthesis with Adversarial Vocoding

    Get PDF
    Recent approaches in text-to-speech (TTS) synthesis employ neural network strategies to vocode perceptually-informed spectrogram representations directly into listenable waveforms. Such vocoding procedures create a computational bottleneck in modern TTS pipelines. We propose an alternative approach which utilizes generative adversarial networks (GANs) to learn mappings from perceptually-informed spectrograms to simple magnitude spectrograms which can be heuristically vocoded. Through a user study, we show that our approach significantly outperforms na\"ive vocoding strategies while being hundreds of times faster than neural network vocoders used in state-of-the-art TTS systems. We also show that our method can be used to achieve state-of-the-art results in unsupervised synthesis of individual words of speech.Comment: Published as a conference paper at INTERSPEECH 201

    Universal Adversarial Perturbations for Speech Recognition Systems

    Get PDF
    In this work, we demonstrate the existence of universal adversarial audio perturbations that cause mis-transcription of audio signals by automatic speech recognition (ASR) systems. We propose an algorithm to find a single quasi-imperceptible perturbation, which when added to any arbitrary speech signal, will most likely fool the victim speech recognition model. Our experiments demonstrate the application of our proposed technique by crafting audio-agnostic universal perturbations for the state-of-the-art ASR system -- Mozilla DeepSpeech. Additionally, we show that such perturbations generalize to a significant extent across models that are not available during training, by performing a transferability test on a WaveNet based ASR system.Comment: Published as a conference paper at INTERSPEECH 201

    FastWave: Accelerating Autoregressive Convolutional Neural Networks on FPGA

    Full text link
    Autoregressive convolutional neural networks (CNNs) have been widely exploited for sequence generation tasks such as audio synthesis, language modeling and neural machine translation. WaveNet is a deep autoregressive CNN composed of several stacked layers of dilated convolution that is used for sequence generation. While WaveNet produces state-of-the art audio generation results, the naive inference implementation is quite slow; it takes a few minutes to generate just one second of audio on a high-end GPU. In this work, we develop the first accelerator platform~\textit{FastWave} for autoregressive convolutional neural networks, and address the associated design challenges. We design the Fast-Wavenet inference model in Vivado HLS and perform a wide range of optimizations including fixed-point implementation, array partitioning and pipelining. Our model uses a fully parameterized parallel architecture for fast matrix-vector multiplication that enables per-layer customized latency fine-tuning for further throughput improvement. Our experiments comparatively assess the trade-off between throughput and resource utilization for various optimizations. Our best WaveNet design on the Xilinx XCVU13P FPGA that uses only on-chip memory, achieves 66 faster generation speed compared to CPU implementation and 11 faster generation speed than GPU implementation.Comment: Published as a conference paper at ICCAD 201

    ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly Disentangled Self-supervised Speech Representations

    Full text link
    In this work, we propose a zero-shot voice conversion method using speech representations trained with self-supervised learning. First, we develop a multi-task model to decompose a speech utterance into features such as linguistic content, speaker characteristics, and speaking style. To disentangle content and speaker representations, we propose a training strategy based on Siamese networks that encourages similarity between the content representations of the original and pitch-shifted audio. Next, we develop a synthesis model with pitch and duration predictors that can effectively reconstruct the speech signal from its decomposed representation. Our framework allows controllable and speaker-adaptive synthesis to perform zero-shot any-to-any voice conversion achieving state-of-the-art results on metrics evaluating speaker similarity, intelligibility, and naturalness. Using just 10 seconds of data for a target speaker, our framework can perform voice swapping and achieves a speaker verification EER of 5.5% for seen speakers and 8.4% for unseen speakers.Comment: Published as a conference paper at ICASSP 202

    REMARK-LLM: A Robust and Efficient Watermarking Framework for Generative Large Language Models

    Full text link
    We present REMARK-LLM, a novel efficient, and robust watermarking framework designed for texts generated by large language models (LLMs). Synthesizing human-like content using LLMs necessitates vast computational resources and extensive datasets, encapsulating critical intellectual property (IP). However, the generated content is prone to malicious exploitation, including spamming and plagiarism. To address the challenges, REMARK-LLM proposes three new components: (i) a learning-based message encoding module to infuse binary signatures into LLM-generated texts; (ii) a reparameterization module to transform the dense distributions from the message encoding to the sparse distribution of the watermarked textual tokens; (iii) a decoding module dedicated for signature extraction; Furthermore, we introduce an optimized beam search algorithm to guarantee the coherence and consistency of the generated content. REMARK-LLM is rigorously trained to encourage the preservation of semantic integrity in watermarked content, while ensuring effective watermark retrieval. Extensive evaluations on multiple unseen datasets highlight REMARK-LLM proficiency and transferability in inserting 2 times more signature bits into the same texts when compared to prior art, all while maintaining semantic integrity. Furthermore, REMARK-LLM exhibits better resilience against a spectrum of watermark detection and removal attacks
    corecore